Scaled sparse linear regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Conditional Sparse Linear Regression

Machine learning and statistics typically focus on building models that capture the vast majority of the data, possibly ignoring a small subset of data as “noise” or “outliers.” By contrast, here we consider the problem of jointly identifying a significant (but perhaps small) segment of a population in which there is a highly sparse linear regression fit, together with the coefficients for the ...

متن کامل

Online Sparse Linear Regression

We consider the online sparse linear regression problem, which is the problem of sequentially making predictions observing only a limited number of features in each round, to minimize regret with respect to the best sparse linear regressor, where prediction accuracy is measured by square loss. We give an inefficient algorithm that obtains regret bounded by Õ( √ T ) after T prediction rounds. We...

متن کامل

Approximate Sparse Linear Regression

In the Sparse Linear Regression (SLR) problem, given a d×n matrix M and a d-dimensional vector q, we want to compute a k-sparse vector τ such that the error ‖Mτ − q‖ is minimized. In this paper, we present algorithms and conditional lower bounds for several variants of this problem. In particular, we consider (i) the Affine SLR where we add the constraint that ∑ i τi = 1 and (ii) the Convex SLR...

متن کامل

Scaled likelihood linear regression for hidden Markov model adaptation

In the context of continuous Hidden Markov Model (HMM) based speech-recognition, linear regression approaches have become popular to adapt the acoustic models to the specific speaker’s characteristics. The well known Maximum Likelihood Linear Regression (MLLR) [1] and Maximum A Posteriori Linear Regression (MAPLR) [2] are just two of them, which differ primarily in the training objective they a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2012

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/ass043